Electronic Supplementary Information

Influence of Spacer Length and Rigidity on Properties of Phosphonium Polymers and on their Supramolecular Assembly with a Conjugated Polyelectrolyte

Xiaoyan Yang, Catherine A. Conrad, Wang Wan, Monte S. Bedford, Longyu Hu, George Chumanov and Rhett C. Smith*

Department of Chemistry and Center for Optical Materials Science and Engineering Technologies (COMSET), Clemson University, Clemson, SC 29634

Email: rhett@clemson.edu

List of Supporting Information Figures:

Figure S1	Proton NMR spectrum of LX1
Figure S2	Proton NMR spectrum of LX2
Figure S3	Proton NMR spectrum of LX3
Figure S4	Proton NMR spectrum of LX4
Figure S5	Proton NMR spectrum of LX5
Figure S6	Proton NMR spectrum of LX8
Figure S7	Proton NMR spectrum of LXPh
Figure S8	Proton NMR spectrum of Pc12
Figure S9	Proton NMR spectrum of Pc12-100
Figure S10	Phosphorous-31 NMR of compound LX1 ((CD ₃) ₂ SO, 121 MHz)
Figure S11	Phosphorous-31 NMR of compound LX2 ((CD ₃) ₂ SO, 121 MHz)
Figure S12	Phosphorous-31 NMR of compound LX3 ((CD ₃) ₂ SO, 121 MHz)
Figure S13	Phosphorous-31 NMR of compound LX4 ((CD ₃) ₂ SO, 121 MHz)
Figure S14	Phosphorous-31 NMR of compound LX5 ((CD ₃) ₂ SO, 121 MHz)
Figure S15	Phosphorous-31 NMR of compound LX8 ((CD ₃) ₂ SO, 121 MHz)
Figure S16	Phosphorous-31 NMR of compound LXPh ((CD ₃) ₂ SO, 121 MHz)
Figure S17	TGA of LX polymers
Figure S18	DSC of LX polymers
Figure S19.	X-ray Powder Diffraction of polymers.
Figure S20.	AFM (5×5 μm)
Figure S21.	AFM (1×1 μm)

signals.

Figure S2. Proton NMR spectrum of LX2 ((CD_3)₂SO, 300 MHz). Peak marked with an asterisk correspond to solvent signals.

Figure S3. Proton NMR spectrum of **LX3** ((CD_3)₂SO, 300 MHz). Peak marked with an asterisk correspond to solvent signals.

Figure S4. Proton NMR spectrum of **LX4** ((CD_3)₂SO, 300 MHz). Peak marked with an asterisk correspond to solvent signals.

signals.

Figure S6. Proton NMR spectrum of **LX8** ((CD_3)₂SO, 300 MHz). Peak marked with an asterisk correspond to solvent signals.

Figure S7. Proton NMR spectrum of **LXPh** ((CD_3)₂SO, 300 MHz). Peak marked with an asterisk correspond to solvent signals.

signals.

solvent signals.

Figure **S10**. Phosphorous-31 NMR of compound **LX1** ((CD₃)₂SO, 121 MHz)

Figure **S11**. Phosphorous-31 NMR of compound **LX2** ((CD₃)₂SO, 121 MHz)

Figure **S12**. Phosphorous-31 NMR of compound **LX3** ((CD_3)₂SO, 121 MHz)

Figure **S13**. Phosphorous-31 NMR of compound **LX4** (($(CD_3)_2SO$, 121 MHz)

Figure **S14**. Phosphorous-31 NMR of compound **LX5** ((CD₃)₂SO, 121 MHz)

Figure **\$15**. Phosphorous-31 NMR of compound **LX8** ((CD₃)₂SO, 121 MHz)

Figure S17. TGA of LX polymers: LX1 (A), LX2 (B), LX3 (C), LX4 (D), LX5 (E), LX8 (F) and LXPh (G).

Figure S18. DSC of LX polymers: LX1 (A), LX2 (B), LX3 (C), LX4 (D), LX5 (E), LX8 (F) and LXPh (G).

Figure **S19**. X-ray Powder Diffraction of polymers.

Figure S20. AFM (5×5 μ m) 2D height images and 3D images of LbL films of LX with Pc12-100: LX1/Pc12-100 (A), LX2/Pc12-100 (B), LX3/Pc12-100 (C), LX4/Pc12-100 (D), LX5/Pc12-100 (E), LX8/Pc12-100 (F) and LXPh/Pc12-100 (G) and clean glass slide (H).

Figure **21.** AFM (1×1 μ m) 2D height images and 3D images of LbL films of LX with Pc12-100: LX1/Pc12-100 (A), LX2/Pc12-100 (B), LX3/Pc12-100 (C), LX4/Pc12-100 (D), LX5/Pc12-100 (E), LX8/Pc12-100 (F) and LXPh/Pc12-100 (G) and clean glass slide (H).