Supplementary material (ESI) for J. Mater. Chem.C

Supporting information for:

Optical Properties of SiO₂@M (M=Au, Pd, Pt) Coreshell Nanoparticles: Material Dependence, and Damping Mechanisms

Xuemin Zhang,*a Shunsheng Ye,^b Xun Zhang,^c Lianpeng Wu^c

 ^a Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110004, P. R. China, E-mail: zhangxuemin@mail.neu.edu.cn.
 ^b State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China.

^c Jilin Entry-exit Inspection and Quarantine Bureau, Changchun 130062, P. R. China

Figure S1. TEM image of gold-seeded silica core. It can be roughly estimated that the surface coverage of gold seeds is less than 30%.

Figure S2. SEM image of silica nanospheres prepared by the Stöber method. Different from SiO₂@M core-shell NPs, their surface are clean and smooth. The scale bar represents 200 nm.

Figure S3. Magnified SEM images of $SiO_2@Pd$ (A) and $SiO_2@Pt$ (B) NPs. Both of their shell thicknesses are ~13nm.

position, core size and gold shen thickness.						
Gold shell thickness (nm)	Diameter of the SiO ₂ Core (nm)					
	40	100	160	280	400	
8	575					
10	563	707	836	1050	1256	
15	540	658	755	994	1218	
20	532 ^b	618	720	956	1189	
25	532	596	696	926	1179	
30	532	601	689	916	1187	
35	535	607	700	932	1210	
40	537	617	735	960	1250	

 Table S1. Statistical analysis of the relationship between the dipolar peak position^a, core size and gold shell thickness.

^a in the ESI, the surrounding environment was set as air in the FDTD calculations. ^b the peak position (nm) represented using red color indicates the crossover point.

position, core size and i u shen thickness.						
Pd shell thickness (nm)	Diameter of the SiO ₂ Core (nm)					
	40	100	160	280	400	
5	375					
10	343	552	748	1195	1452	
15	325 ^b	496	681	1044	1407	
20	325	479	657	1001	1357	
25	337	485	659	957	1329	
30	351	500	674	970	1338	
35	377	532	703	995	1348	
40		560	733	1036	1367	

 Table S2. Statistical analysis of the relationship between the dipolar peak position^a, core size and Pd shell thickness.

^a in the ESI, the surrounding environment was set as air in the FDTD calculations. ^b the peak position (nm) represented using red color indicates the crossover point.

position, core size and resident unexpress.							
Pt shell thickness (nm)	Diameter of the SiO ₂ Core (nm)						
	40	100	160	280	400		
5	388						
10	353	559	726	1068	1436		
15	333 ^b	505	665	994	1386		
20	333	486	644	970	1338		
25	342	489	650	972	1328		
30	355	499	663	983	1328		
35	374	538	700	1003	1347		
40		562	738	1045	1357		

 Table S3. Statistical analysis of the relationship between the dipolar peak position^a, core size and Pt shell thickness.

^a in the ESI, the surrounding environment was set as air in the FDTD calculations.

^b the peak position (nm) represented using red color indicates the crossover point.

Figure S4. SiO₂@Au core-shell NPs with rough surfaces. The shell thickness are roughly 36 nm and 42 nm, respectively. Their corresponding extinction spectra are given in Figure 3B.

Figure S5. Pd (left) and Pt (right) nanoparticle decorated silica core.

The polarizability α of a metallic nanoshell can be represented using following *equation:*

$$\alpha = 4\pi a_2^3 \frac{(\varepsilon_2 - \varepsilon_m)(\varepsilon_1 + 2\varepsilon_2) + f(\varepsilon_1 - \varepsilon_2)(\varepsilon_m + 2\varepsilon_2)}{(\varepsilon_2 + 2\varepsilon_m)(\varepsilon_1 + 2\varepsilon_m) + f(2\varepsilon_2 - 2\varepsilon_m)(\varepsilon_1 - \varepsilon_2)}$$

where a_1 is the inner radius, a_2 is the outer radius, $f = \alpha_1^3/\alpha_2^3$ being the fraction of the total particle volume occupied by the inner sphere; ε_1 , ε_m and ε_2 are the dielectric constants of the core, shell and surrounding environment, respectively. From equation S1, it can be concluded that $\boldsymbol{\alpha}$ will reach its maximum at the condition that the denominator equals 0. Because ε_1 , ε_2 , f are all real numbers and ε_m is a complex number, the presence of large imaginary part ε_i in the ε_m will greatly reduce the magnitude of $\boldsymbol{\alpha}$. For Pt and Pd, they exhibit a higher value of ε_i compared to Au (in the present spectral range, approximately 10 times larger). As a result, the polarizability $\boldsymbol{\alpha}$ of a Pd and Pt nanoshells is much lower than that of Au nanoshells. In the meanwhile, it is also noted that $\boldsymbol{\alpha}$ has a functional dependence on a_2^3 , therefore, the crossover thickness generally increases with the increase of core sizes.