Electronic Supplementary Information

Facile Synthesis of Composition-Gradient Cd_{1-x}Zn_xS Quantum Dots by Cation Exchange for Controlled Optical Properties

Dayeon Choi, Ji-Young Pyo, Yeonho Kim, and Du-Jeon Jang*

Department of Chemistry, Seoul National University, NS60, Seoul 151-742, Korea E-mail: <u>djjang@snu.ac.kr</u>

Fig. S1 EDX spectra of (a) $G-Cd_{0.92}Zn_{0.08}S$, (b) $G-Cd_{0.82}Zn_{0.18}S$, (c) $G-Cd_{0.71}Zn_{0.29}S$, (d) $G-Cd_{0.49}Zn_{0.51}S$, and (e) $G-Cd_{0.13}Zn_{0.87}S$.

Fig. S2 Variation of observed distances between adjacent (111) planes of $G-Cd_{1-x}Zn_xS$ as a function of x; the standard distances between the (111) planes of cubic zinc-blende ZnS and CdS are indicated with crosses.

Fig. S3 Maximum-normalized PL spectra of as-prepared G–Cd_{1-x}Zn_xS QDs dispersed in water, where x is indicated inside. The samples were excited at 355 nm, and the inset shows the λ_{max} of QDs versus x.

Fig. S4 HRTEM images of (a) CdS, (b) G-Cd_{0.71}Zn_{0.29}S, (c) C-Cd_{0.68}Zn_{0.32}S, and (d) A-Cd_{0.74}Zn_{0.26}S.

Fig. S5 PL spectra of various indicated $Cd_{1-x}Zn_xS$ QDs dispersed in water. The samples were excited at 355 nm. Note that the Cd^{2+} concentration of the colloidal solution of $G-Cd_{0.71}Zn_{0.29}S$ QDs has been calibrated to 5.0 mM as those of the other colloidal solutions.

Fig. S6 TGA(black) and DTA(red) curves of G–Cd_{0.71}Zn_{0.29}S QDs.