Electronic Supporting Information(ESI)

A triangle [Mn₃] cluster-based ferrimagnet with significant

magnetic entropy change

Huan-Cheng Hu, Chun-Shuai Cao, Yang Yang, Peng Cheng, Bin Zhao*

Table S1 Summary of the reported molecule-based magnetic coolants for T_{max} >3.0 K

Compounds		$-\Delta S_{\rm m}$	ΔH	Ref
		(J kg ⁻¹ K ⁻¹)	(T)	Iter.
$\mathrm{Gd}_4\mathrm{Ni}_4$	3.5	19.0	7	1
$\mathrm{Gd}_4\mathrm{Ni}_8$	3.6	22	7	2
$Gd_{24}Co_{16}$	3.8	26.0	7	3
$\mathrm{Gd}_6\mathrm{Co}_4$	4	22.3	7	4
Gd_5Ni_{12}	4	21.8	7	5
$\mathrm{Gd}_8\mathrm{Co}_8$	4	20.4	7	4
$\mathrm{Gd}_4\mathrm{Co}_8$	4	19.9	7	4
Mn_4	4	19.34	5	6
$Gd_4Mn^{III}_4$	4	19.0	7	7
GdNi ₂	4	13.74	7	8
Co ₅	4	13.23	8	9
Dy ₅ Zn	4	10.82	7	10
Gd_2Cr_2	4.1	11.4	9	11
$Mn^{III}{}_{12}Mn^{II}{}_7$ -1	4.2	8.9	7	12
Gd_2Ni_2	4.5	34.4	7	13
Cu ₁₂ Gd ₆	4.5	14.0	7	14
TbNi ₃	4.5	13.54	7	15
YNi ₃	4.5	10.83	7	15
$[Gd_2(fum)_3(H_2O)_4]_n \cdot 3nH_2O$	5	20.7	7.5	16
Co ₃ Dy	5	12.58	7	17
$Mn^{III}{}_{11}Mn^{II}{}_{6}$	5.2	13.3	9	12
GdNi ₃	5.5	18.31	7	15
$\rm Gd_4Cu_8$	5.6	14.6	7	2
$[Fe_{14}(C_2H_2N_3)_6O_6(OMe)_{18}Cl_6]$ (T _N = 3.4 K)	6	20.3	7	18
$[Fe_{14}(bta)_6O_6(OMe)_{18}Cl_6]$ (T _N = 1.87 K)	6	17.6	7	19
Mn ₁₂ Gd ₆ -1	6	15.8	7	20
Mn_4Gd_3	6	7.4	5	21
Mn_4Dy_3	6	3.7	5	21
$Mn_{12} (T_B=3.0 \text{ K})$	6.5	12.5	3	22
$Mn_{12}Gd_{6}-2$	7	17.0	7	20
Fe ₁₄ (bta) ₂ -Au	7	13.0	6	23

Mn ^{III} 12Mn ^{II} 7- 2	7	9.0	7	24
$[Mn(glc)_2]_n$	≈7	6.9	7	25
DyNi ₃	7.5	≈12.2	7	15
HoNi ₃	7.5	≈11.5	7	15
$\mathrm{Mn^{III}}_{11}\mathrm{Mn^{II}}_{4}$	10	9.5	7	24
Co ₄ (SMR+LRO)	≈10	2.4	5	26
$[Fe(pyrazole)_4]_2[Nb(CN)_8] \cdot 4H_2O\}_n$ (Ferrimagnet)		4.8	5	27
$[Na_2Mn_3(SO_4)_3(\mu_3-OH)_2(\mu_2-OH_2)_2]_n$ (this work)	13.5	14.4	7	
$Mn_3(OH)_2(C_6H_2O_4S)_2 (T_N = 17.7 \text{ K})$	≈23	≈1.5	5	28
$[Mn^{II}(pydz)(H_2O)_2][Mn^{II}(H_2O)_2][Nb^{IV}(CN)_8] \cdot 3H_2O \text{ (Ferrimagnet)}$	43	8.95	5	29
$[Mn^{II}(pydz)(H_2O)_2][Mn^{II}(H_2O)_2][Nb^{IV}(CN)_8] \cdot 3H_2O (p=1.19 \text{ GPa})$	52.5	4.63	5	29
NiCr _{2/3} (Ferromagnet order)	68	6.6	7	30
CsNi ^{II} [Cr ^{III} (CN) ₆] ·H ₂ O (Ferromagnetic order)	≈90	6.6	7	31
CsNiCr (Ferromagnet order)	95	6.9	7	30
Cr ₃ ^{II} [Cr ^{III} (CN) ₆] ₂ ·12H ₂ O (Ferrimagnet order)	≈230	0.93	7	31

Note: T_N: Antiferromagnetic temperature; T_B: Block temperature; SMR: Slow magnetic relaxion; LRO: Long-range Order.

Empirical formula	NaoMnoSoO16He
Crystal system	orthorhombic
Space group	Cmc2 ₁
a/Å	18.0718(6)
b/Å	7.8465(3)
c/Å	9.9048(3)
α/°	90.00
β/°	90.00
γ/°	90.00
Volume / Å ³	1404.51(9)
Ζ	8
$\rho_{calc} mg/mm^3$	2.681
m/mm-1	3.250
F(000)	1108.0
Radiation	Mo K α ($\lambda = 0.71073$)
2θ range for data collection	7 to 52°
Index ranges	$-19 \le h \le 22, -5 \le k \le 9, -11 \le l \le 12$
Reflections collected	1784
Independent reflections	1193 [$R_{int} = 0.0280, R_{sigma} = 0.0487$]
Goodness-of-fit on F2	1.081
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0334, wR_2 = 0.0841$
Final R indexes [all data]	$R_1 = 0.0348$, $wR_2 = 0.0858$
^{<i>a</i>} R1 = $\sum \left\ F_{o} \right\ - \left F_{c} \right\ / \sum \left F_{o} \right $	$^{b}wR2 = \sum w \left(F_{O}^{2} - F_{C}^{2} \right) / \sum w F_{O}^{4} \right)^{2}$

Table S2 Crystal data and structure refinement for 1

Mn(1)-O(2)#2	2.170(4)	O(2)#1-Mn(1)-O(9)	87.41(18)	O(3)#4-Mn(2)-O(4)	84.17(13)
Mn(1)-O(6)	2.115(4)	O(5)-Mn(1)-O(8)#3	81.18(16)	O(4)-Mn(2)-O(1)#5	89.42(14)
Mn(1)-O(8)#3	2.168(4)	O(5)-Mn(1)-O(9)	95.1(2)	O(5)-Mn(2)-O(4)	91.11(14)
Mn(1)-O(9)	2.182(5)	O(5)-Mn(1)-O(10)	88.4(19)	O(5)-Mn(2)-O(8)	83.8(2)
Mn(1)-O(10)	2.203(5)	O(6)-Mn(1)-O(8)#3	167.2(2)	O(5)-Mn(2)-O(3)#4	106.6(2)
Mn(1)-O(5)	2.163(4)	O(6)-Mn(1)-O(9)	83.25(19)	O(8)-Mn(2)-O(1)#5	90.9(2)
Mn(2)-O(1)#4	2.231(7)	O(6)-Mn(1)-O(10)	92.88(18)	O(8)-Mn(2)-O(3)#4	169.6(2)
Mn(2)-O(3)#5	2.185(6)	O(6)-Mn(1)-O(5)	92.99(18)	O(8)-Mn(2)-O(4)	95.84(12)
Mn(2)-O(4)	2.188(4)	O(8)#3-Mn(1)-O(2)#1	98.65(17)	Mn(1)-O(10)-Na(1)#9	119.49(18)
Mn(2)-O(8)	2.175(6)	O(8)#3-Mn(1)-O(9)	85.9(2)	Mn(1)-O(6)-Na(1)	104.25(17)
Mn(2)#8-O(3)	2.185(6)	O(8)#3-Mn(1)-O(10)	98.3(2)	Mn(1) -O(5)- Mn(1)#2	96.3(2)
Mn(2)-O(5)	2.142(5)	O(9)-Mn(1)-O(10)	174.95(18)	Mn(1)#5-O(8)-Mn(2)	119.8(2)
Mn(2)#3-O(1)	2.231(7)	O(3)#4-Mn(2)-O(1)#5	78.7(2)	Mn(2)-O(5)-Mn(1)	128.36(14)

Table S3. Some selected bond lengths (Å) and angles (degree) for compound 1

Symmetry transformations used to generate equivalent atoms for band length: #2 +X, 1-Y, 1/2+Z; #3 -X, 1-Y, 1/2+Z; #4 -X, 1-Y, -1/2+Z; #5 +X, -1+Y, +Z; #6 1/2-X, 1/2+Y, +Z; #8 +X, 1+Y, +Z; Symmetry transformations used to generate equivalent atoms for band angles: #1 +X, 1-Y, 1/2+Z; #2 -X, +Y, +Z; #3 -X, 1-Y, 1/2+Z; #4 +X, -1+Y, +Z; #5 -X, 1-Y, -1/2+Z; #7 +X, 1-Y, -1/2+Z; #9 1/2-X, -1/2+Y, +Z

Table S4. Geometrical parameters of strong hydrogen bonds for compound 1

Donor HAcceptor	D - H	HA	DA	D - HA
O(10)H(10A)O(7)	0.84	1.94	2.7414	161
O(10)H(10B)O(3)	0.84	2.25	3.0250	154

	Bond length	Bond valences(s)		Bond length	Bond valences(s)
Mn1-O2	2.17	0.33468	Mn2-O1	2.231	0.28381
Mn1-O5	2.163	0.34107	Mn2-O3	2.185	0.32138
Mn1-O6	2.115	0.38831	Mn2-O4	2.188	0.31878
Mn1-O8	2.168	0.33649	Mn2-O4A	2.188	0.31878
Mn1-O9	2.182	0.324	Mn2-O5	2.142	0.36098
Mn1-O10	2.203	0.30612	Mn2-O8	2.175	0.33018

Table S5. The determination of oxidation state for Mn in 1^{32}

Thorp pointed out that the oxidation state of metal ions could be given via the bond valence sum. Bond valence $s = \exp[(r_0 - r)/B]$, where B=0.37, r_0 values base on crystallographically characterized model complexes, r represents the metal-ligand bond lengths, namely, the bond distances of Mn-O in our work, and then 2.03 and 1.93 are gained for Mn1 and Mn2, respectively, indicating the oxidation state of Mn is +2.

Thermogravimetric Analysis (TGA)

To confirm the thermal stability of coordination polymer **1**, thermogravimetric analysis (TGA) has been measured. The result indicates that this compound exhibits high thermal stability. The framework is stable up to about 240 °C, which is indicative of no solvent molecules and strong hydrogen bonded interactions existing in **1**. Further heating, the framework starts to collapse due to the appearance of a gradual weight loss.

Fig. S1 The thermogravimetric analysis curve for coordination polymer 1.

Fig. S2 The plots of $\chi_M vs. T$ and $\chi_M^{-1} vs. T$ for **1** at *H*=1000 Oe from 2 to 300K. The solid line is the best fit according to the Curie-Weiss law (28-300 K).

Fig. S4 The spin sketch map of magnetic interaction for per [Mn₃] cluster and the corresponding chain.

The simulation of magnetic data were carried out based on the Lippard's work (J. Am. Chem. Soc., 1987, 109, 4244), in which one equicrural triangular $[M_3]$ model when each M ion has s = 5/2 (high-spin), and the $\chi_{\rm M}$ is expressed as depicted $\chi_{\rm M} = (Ng^2\beta^2/4kT)^*({\rm F/G})^{33}$ where $F = F_2 + F_3 + 10*(A^3)*(F_6 - F_5) + 35*(A^8)*(1 + F_6) + 84*(A^{15})*F_6 + 165*(A^{24})*(F_6 - F_6) + 165*(A^{15})*F_6 + 1$ F_1)+286*(A^35)*(F_3+F_4+F_5)+455*(A^48)*(F_4+F_5)+680*(A^63)*F_5 $G=F_2+F_3+2*(A^3)*(F_6-F_5)+3*(A^8)*(1+F_6)+4*(A^{15})*F_6+5*(A^{24})*(F_6-F_5)+3*(F_6-F_5)+3*(F_6-F_6)+3*$ F_1)+6*(A^35)*(F_3 + F_4 + F_5)+7*(A^48)*(F_4 + F_5)+8*(A^63)* F_5 $A = \exp(P_2/(0.695 * T))$ $B=exp((P_1-P_2)/(0.695*T))$ $F_1 = B^2$ $F_2 = B^6$ $F_3 = B^{12}$ F₄=B^20 $F_5 = B^{30}$ $F_6 = F_1 + F_2 + F_3 + F_4 + F_5$ $\chi_{\rm M} = 0.09375*(P_3^2)*F/(G*T)$ With the introduction of an intercluster interaction zJ', χ_M is expressed as shown $\chi_M = \chi_M / (1 - 2*P_4 * \chi_M / (0.26*(P_3^2)))$, and $\chi_M T = T * \chi_M / (1 - 2*P_4 * \chi_M / (0.26*(P_3^2)))$ P_1 and P_2 refer to the J_1 (the Mn1…Mn1A interaction) and J_2 (the interactions between Mn1…Mn2 and Mn1A…Mn2), P3 refers to g-factor, P4 refers to zJ' (the intercluster exchange interaction).

References

- T. D. Pasatoiu, A. Ghirri, A. M. Madalan, M. Affronte and M. Andruh, *Dalton Trans.* 2014, 43, 9136.
- T. N. Hooper, J. Schnack, S. Piligkos, M. Evangelisti and E. K. Brechin, *Angew. Chem. Int.* Ed., 2012, 51, 4633.
- Z.-M. Zhang, L.-Y. Pan, W.-Q. Lin, J.-D. Leng, F.-S. Guo, Y.-C. Chen, J.-L. Liu and M.-L. Tong, *Chem. Commun.*, 2013, 49, 8081.
- 4. Y.-Z. Zheng, M. Evangelisti and R. E. P. Winpenny, Chem. Sci., 2011, 2, 99.
- 5. Z.-Y. Li, J. Zhu, X.-Q. Wang, J. Ni, J.-J. Zhang, S.-Q. Liu and C.-Y. Duan, Dalton Trans.,

2013, 42, 5711.

- J.-P. Zhao, R. Zhao, Q. Yang, B.-W. Hu, F.-C. Liu and X.-H. Bu, *Dalton Trans.* 2013, 42, 14509.
- 7. G. Karotsis, S. Kennedy, S. J. Teat, C. M. Beavers, D. A. Fowler, J. J. Morales, M. Evangelisti, S. J. Dalgarno and E. K. Brechin, *J. Am. Chem. Soc.*, 2010, **132**, 12983.
- A. Upadhyay, N. Komatireddy, A. Ghirri, F. Tuna, S. K. Langley, A. K. Srivastava, E. C. Sañudo, B. Moubaraki, K. S. Murray, E. J. McInnes, M. Affronte and M. Shanmugam, *Dalton Trans.*, 2014, 43, 259.
- 9. C.-B. Tian, Z.-J. Lin and S.-W. Du, Cryst. Growth. Des., 2013, 13, 3746.
- P.-F. Shi, Y.-Z. Zheng, X.-Q. Zhao, G. Xiong, B. Zhao, F.-F. Wan and P. Cheng, *Chem. Eur. J.*, 2012, 18, 15086.
- C. A. Thuesen, K. S. Pedersen, M. Schau-Magnussen, M. Evangelisti, J. Vibenholt, S. Piligkos, H. Weihe and J. Bendix, *Dalton Trans.*, 2012, 41, 11284.
- 12. S. Nayak, M. Evangelisti, A. K. Powell and J. Reedijk, Chem. Eur. J., 2010, 16, 12865.
- 13. P. Wang, S. Shannigrahi, N. L. Yakovlev and T. S. A. Hor, Chem. Asian J., 2013, 8, 2943.
- 14. J.-L. Liu, Y.-C. Chen, Q.-W. Li, S. Gómez-Coca, D. Aravena, E. Ruiz, W.-Q. Lin, J.-D. Leng and M.-L. Tong, *Chem. Commun.*, 2013, **49**, 6549.
- 15. P. Wang, S. Shannigrahi, N. L. Yakovlev and T. S. A. Hor, Dalton Trans., 2014, 43, 182.
- L. Sedláková, J. Hanko, A. Orendáčová, M. Orendáč, C.-L. Zhou, W.-H. Zhu, B.-W. Wang, Z.-M. Wang and S. Gao, *J. Alloys Compd.*, 2009, 487, 425.
- 17. P. Wang, S. Shannigrahi, N. L. Yakovlev and T. S. A. Hor, Inorg. Chem., 2012, 51, 12059.
- R. Shaw, R. H. Laye, L. F. Jones, D. M. Low, C. Talbot-Eeckelaers, Q. Wei, C. J. Milios, S. Teat, M. Helliwell, J. Raftery, M. Evangelisti, M. Affronte, D. Collison, E. K. Brechin and E. J. L. McInnes, *Inorg. Chem.*, 2007, 46, 4968.
- (a) D. M. Low, L. F. Jones, A. Bell, E. K. Brechin, T. Mallah, E. Rivière, S. J. Teat and E. J. L. McInnes, *Angew. Chem. Int. Ed.*, 2003, 42, 3781; (b) M. Evangelisti, A. Candini, A. Ghirri, M. Affronte, E. K. Brechin and E. J. L. McInnes, *Appl. Phys. Lett.*, 2005, 87, 072504.
- J.-L. Liu, W.-Q. Lin, Y.-C. Chen, J.-D. Leng, F.-S. Guo and M.-L. Tong, *Inorg. Chem.*, 2013, 52, 457.
- 21. C.-M. Liu, D.-Q. Zhang and D.-B. Zhu, Dalton Trans., 2010, 39, 11325.
- 22. F. Torres, J. M. Hernández, X. Bohigas and J. Tejada, Appl. Phys. Lett., 2000, 77, 3248.
- 23. V. Corradini, A. Ghirri, A. Candini, R. Biagi, U. del Pennino, G. Dotti, E. Otero, F. Choueikani, R. J. Blagg, E. J. L. McInnes and M. Affronte, *Adv. Mater.*, 2013, **25**, 2816.
- 24. J.-L. Liu, J.-D. Leng, Z.-J. Lin and M.-L. Tong, Chem. Asian J., 2011, 6, 1007.
- 25. Y.-C. Chen, F.-S. Guo, J.-L. Liu, J.-D. Leng, P. Vrábel, M. Orendáč, J. Prokleška, V. Sechovský and M.-L. Tong, *Chem. Eur. J.*, 2014, **20**, 3029.
- 26. R. Sibille, T. Mazet, B. Malaman, T. Gaudisson and M. François, *Inorg. Chem.*, 2012, **51**, 2885.
- 27. R. Pelka, P. Konieczny, P. M. Zieliński, T. Wasiutyński, Y. Miyazaki, A. Inaba, D. Pinkowicz and B. Sieklucka, *J. Magn. Magn. Mater.* 2014, **354**, 359.
- 28. R. Sibille, T. Mazet, E. Elkaïm, B. Malaman and M. François, Inorg. Chem., 2013, 52, 608.
- 29. M. Fitta, M. Bałanda, R. Pełka, P. Konieczny, D. Pinkowicz and B. Sieklucka, J. Phys.: Condens. Matter, 2013, 25, 496012.
- 30. M. Evangelisti, E. Manuel, M. Affronte, M. Okubo, C. Train and M. Verdaguer, J. Magn.

Magn. Mater. 2007, 316, 569.

- 31. E. Manuel and M. Evangelisti, Phys. Rev. B, 2006, 73, 172406.
- 32. W. T. Liu, H. H. Thorp, Inorg. Chem., 1993, 32, 4102.
- 33. S. M. Gorun, G. C. Papaefthymiou, R. B. Frankel and S. J. Lippard, *J. Am. Chem. Soc.*, 1987, 109, 4244.

34.