Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2015

Supporting information

Electrochemical luminescence modulation in a Eu(III) complex-modified TiO₂ electrode

Kenji Kanazawa, Kazuki Nakamura, and Norihisa Kobayashi*

Department of Image and Materials, Graduate School of Advanced Integration Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan

> **E-mail: koban@faculty.chiba-u.jp; Fax: +81-43-290-3490; Tel: +81-43-290-3457*

Table of Contents

1.	SEM-EDS analysis of Eu(tta) ₃ dcbpy-modified electrode	. S1
2.	Measurement configuration of the fluorescence spectroelectrochemical cell	S2
3.	Emission decay profiles of $Eu(tta)_3(H_2O)_2$ and $Eu(tta)_3dcbpy$ -modified TiO_2	
	electrode	. S3
4.	Measurement configuration of the fluorescence spectroelectrochemical cell	S4
5.	Emission decay profiles of $Eu(tta)_3 dcbpy$ -modified TiO_2 electrode under open	
	circuit and application potential	. S5
6.	Absorption spectra of tta and Eu(tta) ₃ (H ₂ O) ₂	. S6
7.	Cyclic voltammograms of tta and Eu(tta) ₃ (H ₂ O) ₂	. S7

1. SEM-EDS analysis of Eu(tta)₃dcbpy-modified electrode

Fig. S1 EDS spectrum of the Eu(tta)₃dcbpy-modified electrode.

Element	Atomic [%]
С	13.85
Ο	61.30
F	_
S	0.14
Ti	23.97
Eu	0.73

Table. S1 Elemental ratio of the Eu(tta)₃dcbpy-modified electrode.

2. Measurement configuration of the fluorescence spectroelectrochemical cell

Fig. S2 Schematic representation of measurement configuration of the fluorescence spectroelectrochemical cell: connection for (W) working, (R) reference, and (C) counter electrode: Eu(tta)₃dcbpy-modified electrode, Ag/AgCl, and Pt wire. (1) Excitation source. (2) Emission detector.

3. Emission decay profiles of $Eu(tta)_3(H_2O)_2$ and $Eu(tta)_3dcbpy-modified TiO_2$ electrode

Fig. S3 Emission decay profile of the PC solution containing 50 μ M Eu(tta)₃(H₂O)₂ by using the quartz cell whose path length is 1 mm. Excitation wavelength is 337 nm.

Fig. S4 Emission decay curves of $Eu(tta)_3$ dcbpy-modified TiO₂ electrode without solution. Excitation wavelength is 337 nm. Fitting function was employed biexponential decay.

4. Measurement configuration of the fluorescence spectroelectrochemical

cell

Fig. S5 Schematic representation of emission lifetime measurement system: connection for (W) working, (R) reference, and (C) counter electrode: Eu(tta)₃dcbpy complex-modified electrode, Ag/AgCl, and Pt wire. Wavelength of the laser is 337 nm.

5. Emission decay profiles of Eu(tta)₃dcbpy modified TiO₂ electrode

under open circuit and application potential

Fig. S6 Emission decay curves of $Eu(tta)_3dcbpy$ modified on TiO_2 electrode by irradiated at 337 nm when the potential at -0.8 V (vs. Ag/AgCl) was applied to the cell for 0, 0.5, 1, 2, 3, and 5 s.

6. Absorption spectra of tta and Eu(tta)₃(H₂O)₂

Fig. S7 Normalized absorption spectra of TTA (10 μ M, black line) and Eu(tta)₃(H₂O)₂ (10 μ M, red dashed line) in PC solution.

7. Cyclic voltammograms of TTA and Eu(tta)₃(H₂O)₂

Fig. S8 CVs of PC solution containing in tta (10 mM, blue line) or $Eu(tta)_3(H_2O)_2$ (10 mM, red dashed line) and $LiClO_4$ (200 mM, black line). Scan rate was 50 mV/s.