1 Supporting Information

2 Efficient Fiber-shaped Zinc Bromide Batteries and Dye-sensitized Solar Cells for

3 Flexible Power Sources

- 4 Ming Peng^a, Kai Yan^a, Hsienwei Hu^a, Dinghan Shen^a, Weixing Song^b, and Dechun
- 5 Zou^{a, b}*
- 6
- 7 [*] Prof. Dechun Zou (E-mail: dczou@pku.edu.cn)
- 8 "Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer
- 9 Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular
- 10 Engineering, Peking University, Beijing 100871, China. Tel/Fax: +86-10-6275-9799.
- 11 ^bBeijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Science,
- 12 Beijing, China.
- 13

15 **Figure S1** Cyclic voltammetry of Pt wire (a) and carbon fiber (b) in diluted $ZnBr_2$ 16 solution at 0.10 V/S. (The catholic peak at -1 V vs Ag+/Ag may reflect the reduction 17 of Zn^{2+} .)

2 Figure S2 Surface morphology of the polished Zn strip.

3

Table S1 FB parameters under different charge/discharge current densities

I (mA)	J (mA/mL)	J (A/g Pt)	CE	VE	EE	Q _v (mA h/mL)	E _v (mW h/mL)	P _v (mW/mL)	Q _d (mA h/g)	E _d (mW h/g)	P _d (mW/g)	Qı (mA h/cm)	E ₁ (mW h/cm)	P _l (mW/cm)	Q _{pt} (A h/g)	E _{pt} (W h/g)	P _{pt} (W/g)
10	11.11	1.56	0.86	0.80	0.69	19.15	28.37	16.46	4.84	7.17	4.16	1.92	2.84	1.65	2.69	3.99	2.31
20	22.22	3.13	0.86	0.76	0.65	19.01	27.79	32.49	4.80	7.02	8.21	1.90	2.78	3.25	2.67	3.91	4.57
40	44.44	6.25	0.93	0.66	0.61	9.48	13.16	61.69	2.40	3.33	15.59	0.95	1.32	6.17	1.33	1.85	8.68
50	55.56	7.81	0.94	0.64	0.60	6.27	8.52	75.54	1.58	2.15	19.09	0.63	0.85	7.55	0.88	1.20	10.62

The flexible FB weighs 3.56 g and is 9.0 cm long. It contains a 0.9 mL electrolyte and a 6.4 mg Pt electrode.

2 Figure S3 After the charge/discharge cycles with a current of 40 mA (~ 40 mA/mL),
3 inner layer of the FB remains "orange" and can drive a motor for more than 20

4 minutes.

7 Figure S4 Typical charge/discharge curves of the flexible FB in freestanding and
8 bending states at 20 mA/mL with a constant charging capacity of 11.11 mA h.

Figure S5 (a) Current responses of a typical all CF-based flexible battery (Cathode:
6.0 mg; electrolyte: 1.0 mL; weight: 2.74 g; length: 10.0 cm) to a linear voltage scan
at 0.10 V/S at a range of -0.2 V-2.0 V (versus Zn²⁺/Zn); (b) Nyquist plots of the fresh
device; (c) CE, VE, and EE of the flexible battery with a constant charging capacity
of 5 mA h at 5 mA/mL (0.50 mA/cm); (d) cycle stability of the flexible battery with a
constant charging capacity of 5 mA h at 5 mA/mL. Inset: Typical charge/discharge
curves.

Figure S6 Current–voltage curves of the efficient FDSC under the forward and
backward tests, as well as their average.

Case	I _{SC} (mA)	$J_{ m SC}$ (mA/cm ²)*	$V_{\rm OC}$ (V)	FF	η (%)
Forward	0.559	16.92	0.638	0.641	6.92
Backward	0.562	17.03	0.685	0.728	8.49
Average	0.560	16.97	0.661	0.667	7.48

* The illumination area of the FDSC is 0.033 cm².

5

Figure S7 (a) Schematic diagram of the Ti wire-supported TiO₂ bilayer structure.
Field emission scanning electron microscopy images of: (b) cross-section of the asprepared structure; (c) enlarged TiO₂ layer constructed from titanium
tetraisopropoxide (TTIP); and d) enlarged TiO₂ nanoparticle layer generated from a
home-made TiO₂ colloid.

7

9 Figure S8 Reflectivity of commercial A4 paper.

- 2 Figure S9 Morphology of the original fiber photoanode. No cracks were observed on
- 3 the electrode.

 Table S3 Photovoltaic parameters of the flexible solar device with four FDSCs in series

I _{SC} (mA)	$J_{ m SC}({ m mA/cm^2})$	$V_{\rm OC}$ (V)	FF	<i>P</i> (mW/g)	η (%)
3.93	4.23	3.14	0.701	2.96	9.32

Illumination area: 4×8.00 cm \times 290 $\mu\text{m};$ weight: 2.92 g.

1

Figure S10 Preparation of the flexible battery: a) Pretreated Nafion 117 proton exchange membrane is rolled into a cylinder and fixed with a helically-wound Zn strip (0.2 cm-0.3 cm wide). The cylinder is immersed in the original ZnBr₂ solution for 24 h. b) Twisted Pt wires are thrust into the Zn-surrounded cylinder. c, d) Electrodes are embedded in a heat-shrinkable tube (~10.5 cm) through heating. e, f) ZnBr₂ solution (2.00 M, approximately 1 mL) was injected into the tube and fixed with melton polyethylene. This device is ready for charge/discharge cycles.

Figure S11 Preparation of the fiber-based photoanode with TiO₂ bilayer. 1) A clean, 2 polished Ti wire is coated with titanium tetraisopropoxide (TTIP) and pyrolyzed at 3 400 °C for 1 min. This procedure is repeated several times until a compact TiO₂ film 4 of certain microns is produced. 2) A home-made TiO2 colloid is dip-coated and 5 annealed for 30 s. This procedure is repeated until the target nanoparticle film 6 thickness is reached. 3) The as-prepared structure is annealed in a muffle furnace at 7 400 °C for another 30 min. 4) The Ti wire-supported TiO₂ bilayer is sensitized with 8 N719 ethanol solution for 12 h to form the photoanode. 9

- 10 (D. Zou et al, Nano Energy, 2013, 2, 537-544; J. Power Sources 2014, 247, 249-255.)
- 11

12 Video I: The flexible battery can drive a motor.

- 13 Video II: The FDSC device is flexible.
- 14 Video III: A single flexible FDSC can drive a motor.